Dynamics, Geometry, Number Theory
The Impact of Margulis on Modern Mathematics
Dynamics, Geometry, Number Theory
The Impact of Margulis on Modern Mathematics
This edited collection highlights the foundations and evolution of research by widely influential Fields Medalist Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics; his ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. Dynamics, Geometry, Number Theory introduces these areas, their development, their use in current research, and the connections between them. Divided into four broad sections—“Arithmeticity, Superrigidity, Normal Subgroups”; “Discrete Subgroups”; “Expanders, Representations, Spectral Theory”; and “Homogeneous Dynamics”—the chapters have all been written by the foremost experts on each topic with a view to making them accessible both to graduate students and to experts in other parts of mathematics. This was no simple feat: Margulis’s work stands out in part because of its depth, but also because it brings together ideas from different areas of mathematics. Few can be experts in all of these fields, and this diversity of ideas can make it challenging to enter Margulis’s area of research. Dynamics, Geometry, Number Theory provides one remedy to that challenge.
Reviews
Table of Contents
Introduction
David Fisher
PART I || Arithmeticity, superrigidity, normal subgroups
1. Superrigidity, arithmeticity, normal subgroups: results, ramifications, and directions
David Fisher
2. An extension of Margulis’s superrigidity theorem
Uri Bader and Alex Furman
3. The normal subgroup theorem through measure rigidity
Aaron Brown, Federico Rodriguez Hertz, and Zhiren Wang
PART II || Discrete subgroups
4. Proper actions of discrete subgroups of affine transformations
Jeffrey Danciger, Todd A. Drumm, William M. Goldman, and Ilia Smilga
5. Maximal subgroups of countable groups: a survey
Tsachik Gelander, Yair Glasner, and Gregory Soifer
PART III || Expanders, representations, spectral theory
6. Tempered homogeneous spaces II
Yves Benoist and Toshiyuki Kobayashi
7. Expansion in simple groups
Emmanuel Breuillard and Alexander Lubotzky
8. Elements of a metric spectral theory
Anders Karlsson
PART IV || Homogeneous dynamics
9. Quantitative nondivergence and Diophantine approximation on manifolds
Victor Beresnevich and Dmitry Kleinbock
10. Margulis functions and their applications
Alex Eskin and Shahar Mozes
11. Recent progress on rigidity properties of higher rank diagonalizable actions and applications
Elon Lindenstrauss
12. Effective arguments in unipotent dynamics
Manfred Einsiedler and Amir Mohammadi
13. Effective equidistribution of closed hyperbolic subspaces in congruence quotients of hyperbolic spaces
Manfred Einsiedler and Philipp Wirth
14. Dynamics for discrete subgroups of SL2(C)
Hee Oh
Be the first to know
Get the latest updates on new releases, special offers, and media highlights when you subscribe to our email lists!